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Energy differences between atomic terms belonging to the same configuration are analysed into 
their components, kinetic energy, nuclear attraction and interelectronic repulsion. The results are 
discussed from the point of view of the interpretation of Hund's rule. The main conclusion is that the 
energy differences between terms are essentialy determined by nuclear attraction differences, an 
obvious contradiction to the traditional interpretation of Hund's rule. 

Die Energieunterschiede zwischen Atomtermen mit derselben Konfiguration werden mit Hilfe 
der Zerlegung in kinetische Energie, Kernanziehung und Elektronenabstogung untersucht. Die 
Ergebnisse werden im Hinblick auf die Interpretation der Hundschen Regel diskutiert. Das Haupt- 
ergebnis ist, dab die Energiedifferenzen zwischen Termen im wesentlichen durch die Differenzen in 
der Kernanziehung bestimmt sind; dies stellt einen offensichtlichen Widerspruch zur traditionellen 
Interpretation der Hundschen Regel dar. 

Analyse des diff6rences d'6nergie entre termes atomiques appartenant ~ la m~me configuration 
selon leurs composantes: ~nergie cin6tique, attraction nucl6aire et r6pulsion inter61ectronique. Les 
r6sultats sont discut6s du point de vue de I'interpr6tation de la rbgle de Hun& La conclusion principale 
est que les diff6rences d'6nergie entre les termes sont essentiellement d~termin6es par les diff6rences 
d'attraction nucl6aire, ce qui est en contradiction 6vidente avec l'interpr~tation traditionnelle de la 
r6gle de Hun& 

1. Introduction 

The in terpre ta t ion  of Hund ' s  rule concerning the energetic order of terms 
belonging to an a tomic configurat ion has recently been reinvestigated [1, 2]. 
It has been realized that  the t radi t ional  in terpre ta t ion  according to which the 
energy differences are due to reduced interelectronic repulsion in the states with 
high mult ipl ic i ty  is inconsis tent  with sufficiently accurate computa t ions .  The 
order of levels has been shown to depend on differences in the nuclear  a t t ract ions 
rather  than  the interelectronic repulsions. Actually, in all the cases considered 
the interelectronic repuls ion turned  out  to be higher in the higher mult ipl ici ty 
states. The origin of the er roneous  in terpre ta t ion  of H u n d ' s  rule has been shown 
to be the use of the same a tomic  orbitals  for the different terms, within the one - 
conf igurat ion approximat ion .  

The present  con t r ibu t ion  extends the above ment ioned  studies in a n u m b e r  
of directions. The min ima l  improvement  over the equal orbitals approx imat ion  
sufficient to produce the crucial difference from the po in t  of view of the interpre- 
ta t ion of H u n d ' s  rule is in t roduced in Sect. 2. In  Sects. 3 and  4 the Slater funct ion 
and  SCF results are extended to the positively charged members  of the isoelectronic 
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series, thereby gaining more precise understanding of the role of interelectronic 
repulsion, which the consideration of the neutral atom only tends to underestimate 
too extremely. Inclusion of correlation correction using the Hellmann-Feynman 
and virial theorems is carried out in Sect. 5 and the treatment of the interpretation 
of Hund's rule is concluded in Sect. 6 with a suggestive qualitative discussion 
which seems to justify our confidence in the generality of our conclusions con- 
cerning the roles of the various energetic components in establishing the order 
of terms within atomic configurations. 

2. Scaled Atomic Orbitals 

The use of the same atomic orbitals for the different terms of a given configura- 
tion results in equal o n e -  electron energy values and attributes the whole energetic 
difference between the terms to the interelectronic repulsion. An obvious drawback 
of this approach is that the different terms have the same kinetic energy but different 
values of the total energy, and thus do not satisfy the virial theorem. This can 
very simply be improved by independently scaling the wavefunction for each 
one of the terms. The total energy of each term is given, before  scaling, by the 
expression E = T + L + C in which T, L and C are the kinetic energy, nuclear 
attraction and interelectronic repulsion respectively. The scaling parameter is 
t / = -  (L + C)/(2 T) and the scaled expectation values, denoted by primes, are 
T'=t l  2 T; L'=rlL; C'=~C. Let A and B be two terms belonging to the same 
configuration such thai E(A)< E(B) in accordance with Hund's rule. Assuming 
equal atomic orbitals for A and B one obtains the same one - electron expectation 
values (kinetic energy and nuclear attraction) for the two terms so that E(A) 
= T + L + C(A) and E(B) = T + L + C(B). Hund's rule being predicted within 
this simplified scheme C(A)< C(B) so that t/ (A) > ~ (B). Independent scaling of 
the different wave - functions thus tends to concentrate the electronic charge 
closer to the nucleus for the lower energy term. This tendency has already been 
observed for SCF and CI wave-functions [-1]. L being negative we further get 
L'(A)<L'(B), where L'(A)=L~I(A) and L'(B)=L~(B). This already shows that 
at least part of the energetic difference between the two terms is due to the nuclear 
attraction contribution. It is encouraging that the nuclear attraction for the lower 
energy term is greater in magnitude than that for the higher energy term, again 
in accordance with results of more sophisticated calculations [1, 2]. To evaluate 
the relative importance of nuclear attraction and interelectronic repulsion in 
establishing the energy difference between the terms we note that 

[-C'(A) - C'(B)]/[-L'(A) - L'(B)] = 1 - EC(A) + C(B)]/(-L) ,  

where C'(A)= C(A)rl(A ) and C'(B)= C(B)rI(B ). Furthermore, as E(A) and E(B) 
are negative and T is positive, both L + C(A) and L + C(B) are negative so that 
C(A)/(-L)< 1, as well as C(B)/(-L). We therefore obtain 0< [-C(A)+ C(B)-I/(-L)<2, 
having also noted that C(A) and C(B) are positive whereas L is negative. Thus 
-- 1 < [-C'(A) - C'(B)-I/[-L'(A) -- L'(B)] < 1 or IC'(A) - C'(B)I < IL'(A) - L'(B)I, show- 
ing that the dominant contribution to the energy difference between the terms is 
that due to nuclear attraction, in obvious contradiction to the situation before 
scaling, according to which the only contribution is due to interelectronic re- 
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pulsion. For an isoelectronic series the relative importance of nuclear attraction 
increases with increased nuclear charge so that [C(A)+ C(B)]/(-L) is expected 
to decrease. This leads immediately to the very interesting observation that 
[C'(A)- C'(B)]/[E(A)-E(B)] increases with the nuclear charge, approaching 
unity for Z ~ oe. The relative importance ofinterelectronic repulsion in establishing 
the difference between the terms is therefore higher for the positive ions, becoming 
almost equal to that of the nuclear attraction for high enough nuclear charge. 
This very peculiar high Z behaviour is expected to be confirmed by more accurate 
calculations. 

In order to demonstrate the scaling procedure in connection with the inter- 
pretation of Hund's rule let us consider the Slater orbital approximation to the 
ground configuration of the carbon atom. Optimizing for the 3p term and using 
the obtained orbitals for all three terms we obtain the values of the energy com- 
ponents presented in Table 1. Independent scaling of each term gives the values 
presented in Table 2. It is observed that to the accuracy presented the energy is 
not changed by scaling, depending on the scaling correction only in second order, 
but the energy components are changed as expected. The differences between 
scaled nuclear attraction expectation values are considerably larger than those 
between corresponding interelectronic repulsions. To check the behaviour along 
an isoelectronic series we present in the first row of Table 3 the quantity 
[C'(3P)- C'OD)]/[L'(3P)- L'0D)] for the carbon isoelectronic series, from cal- 
culations analogous to the one presented in detail. The results are again in agree- 
ment with the general analysis, showing an increase of the relative importance of 

Table l. Unscaled energy components for carbon in 3p optimized Slater basis 

T L C E 

3p } } 12.861 -37 .622 
1D 37.622 - 88.106 12.927 -37.556 
1S 13.026 - 37.457 

Table 2. Scaled energy components for carbon in ap optimized Slater basis 

~l T'= --E' E C' 

3p 1.00000 37.622 - 88.106 12.861 
1D 0.99913 37.556 -88 .028 12.916 
IS 0.99781 37.457 - 87.912 12.998 

Table 3. Relative contribution of interelectronic repulsion and nuclear attraction along the carbon iso- 
electronic series: [C(3p) - C(1D)]/[L(aP) -L(ID)] 

Z 6 7 8 9 10 20 50 100 

Scaled Slater orbitals 0.707 0.737 0.763 0.785 0.804 0.896 0.957 0.978 
Optimized Slater orbitals -0 .084  0.120 0.256 0.357 0.426 0.735 0.897 0.950 
SCF -0 .216  0.019 0.177 0.289 0.367 0.708 
Exact - 0.37 - 0.07 0.06 0.16 

22 Theoret. chim. Acta (Bed.) Voi. 23 
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interelectronic repulsion contribution to the energy difference between the two 
terms, the nuclear attraction difference still remaining dominant. Both contribu- 
tions have similar effects, lowering the energy of the term predicted to be the lower 
one by Hund's rule. 

3. Optimized Atomic Orbitals 

A somewhat better approximation than the described scaling procedure is 
the independent optimization of the orbitals for each term, still within the Slater 
orbital approximation. Representative results for carbon are given in Table 4. 
It is noted that C(aP) > C(1D) > C(1S), in contradiction with the traditional inter- 
pretation of Hund's rule but in agreement with the SCF and CI calculations of 
Lemberger and Pauncz [1]. The contribution responsible for the order of levels 
is the nuclear attraction. A further comparison is furnished by the exponential 
parameters of the Slater functions, presented in Table 5. The values show a slight 
expansion of the ls and 2s orbitals in the lower energy terms with respect to the 
higher, whereas the 2p orbital is most contracted in the lowest energy term. 
These finer details which cannot be obtained by simple scaling are in agreement 
with the analysis of the carbon SCF wave-function given in Refo [1]. 

Table 4. Energy components for an optimized Slater basis approximation of carbon 

L C E = - T  

3p -88.106 12.861 - 37.622 
1D - 87063 12.849 -37.557 
tS - 87.746 12.824 - 37.461 

Table 5. Slater function optimized exponential parameters for carbon 

ls 2s 2p 

3p 5.6726 1.608 1.568 
1D 5.6730 1.614 1.536 
1S 5.6735 1.623 1.487 

The reversed order of interelectronic repulsions disappears in the positive 
isoelectronic ions. Hund's rule is obeyed all over the series and nuclear attraction 
is the dominant contribution to the energy difference between the terms. This 
is manifested in the appropriate row of Table 3. 

4. Analysis of SCF Results 

The analysis of SCF results for light neutral atoms, presented in Refs. [1], 
and [2], has been the first indication of the inadequacy of the traditional inter- 
pretation of Hund's rule. In the present section we report the extension of this 



Hund's Rule 313 

analysis to an isoelectronic series including a number of positive ions. The iso- 
electronic series considered is that of carbon, the analysis of SCF [-3] results 
for which is presented in Table 6, as well as in the appropriate row of Table 3. 
It is noted that the dominance of the nuclear attraction contribution in deter- 
mining the energy difference between terms is preserved along the series. However, 
the order of interelectronic repulsions changes from the reversed one for the 
neutral atom, observed in Ref. [-1], to the normal one, namely C(3p) < C(1D) < C(1S) 
for the positive ions. This behaviour is closely similar to that observed for the 
same isoelectronic series with the cruder Slater function approximation. 

Table 6. SCF energy components for the carbon isoelectronic series 

Z C(3P) C(1D) C(1S) L(3p) L(ID) L(~S) 

6 12.760 12.728 12.667 -88.138 -87.990 -87.765 
7 16.175 16.178 16.170 - 123.951 - 123.792 - 123.550 
8 19.531 19.562 19.594 - 165.731 - 165.556 - 165.286 

Table 7. Exact energy components for the carbon isoelectronic series 

Z C(3p) C(aD) C(~S) L(3P) L(~D) L(aS) 

6 12.50 12.44 12.41 - 88.20 - 88.04 - 87.91 
7 15.91 15.90 15.85 - 124.02 - 123.88 - 123.67 
8 19.24 19.25 19.26 - 165.79 - 165.62 - 165.42 
9 22.55 22.58 22.63 -213.55 -213.36 -213.16 

5. Inclusion of Correlation Correction 

Partial inclusion of correlation correction is possible by performance of a 
(necessarily restricted) CI calculation. It is, however, possible to obtain reasonably 
accurate estimates of the exact correlation corrections of the nuclear attraction 
and interelectronic repulsion by the analysis of the available "experimental" 
correlation energies for atomic isoelectronic series [41 with the aid of the Hellmann- 
Feynman and virial theorems. The Hellmann-Feynman theorem with respect 
to the nuclear charge is obeyed by both the exact and SCF energies, and therefore 
by their difference, the correlation energy. The same is true of the virial theorem. 
From the Hellmann-Feynman theorem one obtains for the correlation correction 
to the nuclear attraction the following expression 

L c  = Z ~ E c / ~ Z .  

Using the virial theorem, the correlation correction of the interelectronic re- 
pulsion is given by C c = 2 E c - L c .  A polynomial best fit of the experimental 
correlation energies for the various relevant isoelectronic series~has been differ- 
entiated to obtain L c  from which C c  was also computed. Together with the SCF 
results obtained in the previous section they provide the exact values of the energy 
components, presented in Table 7 and used for the computation of the last row 

22* 



314 J. Katriel:  

of Table 3. It is observed that correlation decreases the interelectronic repulsion, 
as one would expect. Its effect is highest on the 1S interelectronic repulsion, thus 
tending to increase the role of nuclear attraction versus interelectronic repulsion 
with respect to term energy differences. 

6. Discussion 

The various stages of approximation discussed have in common some essential 
features, the central being the obvious role of nuclear attraction differences between 
terms in determining the energy difference between them. It is intuitively suggestive, 
and verified by a large amount of available data, that the energy difference between 
terms of any atomic configuration, A E = E(A) - E ( B )  such that E(A) is the lower 
energy term, is a decreasing function of the nuclear charge within the appropriate 
isoelectronic series, i.e., increasing in absolute value. Application of the Hellmann- 
Feynman theorem therefore suggests that the corresponding difference between 
nuclear attractions, A L = Z •A E/OZ, is negative, namely operates in the right 
direction. The interelectronic repulsion difference, given by the virial theorem 
as A C -- 2A E - A L, is not necessarily either positive or negative. Consideration 
based on a perturbative expansion of the energy in terms of I /Z  suggests a quali- 
tatively reasonable form of the term energy difference, namely A E = e ( Z -  Zo). 
c~ is expected to be negative for A E to decrease with Z, and Z o > 0 is probably 
reasonably close to the minimal charge below which the outer electrons become 
unbound. Then A L = ~Z and A C = c~(Z - 2Zo). A L is therefore always negative 
whereas A C is positive for Z < 2Zo and negative for Z >  2Zo. This qualitative 
argument agrees with the previously presented results and emphasizes in a very 
transparent and appealing way the conclusion already reached before concerning 
the interpretation of Hund's rule. It is further noted that A C/A L = 1 - 2Zo /Z  
so that A C/A L < 1, approaching unity for Z ~ o e ,  again in excellent qualitative 
agreement with the results presented. 

As a final demonstration of the main points of our discussion we present in 
Table 8 a Hellmann-Feynman type analysis of the energy difference between 
extensive CI calculated energies of the 3D and 1D isoelectronic series of helium [5]. 
The essential features revealed leave little to be desired. 

Table 8. Energy component differences for the 3 D - 1D states of  the helium isoelectronic series 

Z A L  A C  

2 - 1 . 2 . 1 0  -4 0.8 
3 - 5 . 5 . 1 0  -6 2.7 
4 - 1 . 1  �9 10 -3 3.5 
5 - 1 . 7 . 1 0  -3 3.2 
6 - 2 . 3 -  10 -3 1.8 
7 - 2 . 8 . 1 0  -3 - 0 . 5  
8 - 3 . 4 . 1 0  -3 - 3 . 3  
9 - 3 . 9 . 1 0  -3 - 6 . 2  

10-4 
10-4 
10-4 
10-4 
10-4 
10-4 
10-4 
10-4 
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